Производство бета каротина

Загрузка...

головна сторінка Реферати Курсові роботи текст файли додати матеріалПродать работу

пошук рефератів

Курсова на тему Производство бета каротина

завантажити
Знайти інші подібні реферати.
подібні якісні роботи

Розмір: 148.48 кб.
Мова: російська
Розмістив (ла): Advisor
20.05.2010
1 2 3    
Витамины (от лат. vita - жизнь), группа органических соединений разнообразной химической природы, необходимых для питания человека, животных и других организмов в ничтожных количествах по сравнению с основными питательными веществами (белками, жирами, углеводами и солями), но имеющих огромное значение для нормального обмена веществ и жизнедеятельности.
Первоисточником В. служат главным образом растения. Человек и животные получают В. непосредственно с растительной пищей или косвенно - через продукты животного происхождения. Важная роль в образовании В. принадлежит также микроорганизмам. Например, микрофлора, обитающая в пищеварительном тракте жвачных животных, обеспечивает их витаминами группы В. Витамины поступают в организм животных и человека с пищей, через стенку желудочно-кишечного тракта, и образуют многочисленные производные (например, эфирные, амидные, нуклеотидные и др.), которые, как правило, соединяются со специфическими белками и образуют многие ферменты, принимающие участие в обмене веществ. Наряду с ассимиляцией в организме непрерывно совершается диссимиляция В., причём продукты их распада (а иногда и малоизменённые молекулы В.) выделяются наружу. Недостаточность снабжения организма В. ведёт к его ослаблению, резкий недостаток В. - к нарушению обмена веществ и заболеваниям - авитаминозам, которые могут окончиться гибелью организма. Авитаминозы могут возникать не только от недостаточного поступления В., но и от нарушения процессов их усвоения и использования в организме.
Основоположник учения о В. русский врач Н. И. Лунин установил (1880), что при кормлении белых мышей только искусственным молоком, состоящим из казеина, жира, молочного сахара и солей, животные погибают. Следовательно, в натуральном молоке содержатся и другие вещества, незаменимые для питания. В 1912 польский врач К. Функ, предложивший само название "В.", обобщил накопленные к тому времени экспериментальные и клинические данные и пришёл к выводу, что такие заболевания, как цинга, рахит, пеллагра, бери-бери, - болезни пищевой недостаточности, или авитаминозы. С этого времени наука о В. (витаминология) начала интенсивно развиваться, что объясняется значением В. не только для борьбы со многими заболеваниями, но и для познания сущности ряда жизненных явлений. Метод обнаружения В., примененный Луниным (содержание животных на специальной диете - вызывание экспериментальных авитаминозов), был положен в основу исследований. Было выяснено, что не все животные нуждаются в полном комплексе В., отдельные виды животных могут самостоятельно синтезировать те или иные В. В то же время многие плесневые и дрожжевые грибы и различные бактерии развиваются на искусственных питательных средах только при добавлении к этим средам вытяжек из растительных или животных тканей, содержащих витамины. Таким образом, витамины необходимы для всех живых организмов. Изучение В. не ограничивается обнаружением их в естественных продуктах с помощью биологических тестов и другими методами. Из этих продуктов получают активные препараты В., изучают их строение и, наконец, получают синтетически. Исследована химическая природа всех известных В. Оказалось, что многие из них встречаются группами по 3-5 и более родственных соединений, различающихся деталями строения и степенью физиологической активности. Было синтезировано большое число искусственных аналогов В. с целью выяснения роли функциональных групп. Это способствовало пониманию действия В. Так, некоторые производные В. с замещенными функциональными группами оказывают на организм противоположное действие, по сравнению с В., вступая с ними в конкурентные отношения за связь со специфическими белками при образовании ферментов или с субстратами воздействия последних.
В. имеют буквенные обозначения, химические названия или названия, характеризующие их по физиологическому действию. В 1956 принята единая классификация В., которая стала общеупотребительной.
Наличие химически чистых В. дало возможность подойти к выяснению их роли в обмене веществ организма. В. либо входят в состав ферментов, либо являются компонентами ферментативных реакций. При отсутствии В. в организме нарушается деятельность ферментных систем, в которых они участвуют, а следовательно, - и обмен веществ. Известно несколько сот ферментов, в состав которых входят В., и огромное количество катализируемых ими реакций. Многие В. - преимущественно участники процессов распада пищевых веществ и освобождения заключённой в них энергии (витамины B1, В2, PP и др.). Участвуют они и в процессах синтеза: B6 и В12 - в синтезе аминокислот и белковом обмене, В3 (пантотеновая кислота) - в синтезе жирных кислот и обмене жиров, Вс (фолиевая кислота) - в синтезе пуриновых и пиримидиновых оснований и многих физиологически важных соединений - ацетилхолина, глутатиона, стероидов и др. Менее изучено действие жирорастворимых В., однако несомненно их участие в построении структур организма, например в образовании костей (витамин D), развитии покровных тканей (витамин А), нормальном развитии эмбриона (витамин Е и др.). Таким образом, витамины имеют огромное физиологическое значение. Выяснение физиологической роли В. позволило использовать их для витаминизации продуктов питания, в лечебной практике и в животноводстве. Особенно широко стали применяться В. после освоения их промышленного синтеза.
Витаминная промышленность, вырабатывает синтетические витамины, коферменты в виде чистых кристаллических веществ и готовых к применению форм (драже, таблетки, ампулы, капсулы, гранулы, концентраты) и в небольших количествах витаминные препараты из растительного и животного сырья. Витамины повышают пищевую ценность продуктов питания, применяются в лечебной практике и для витаминизации кормов с целью повышения продуктивности животноводства.
Производство витаминов в нашей стране организовано в начале 30-х гг. Вначале выпускались витаминные препараты из натурального сырья. Затем было освоено производство синтетических витаминов С и K3. С 1949 по технологии, разработанной советскими учёными, в промышленном масштабе стал осваиваться синтез других витаминов, например тиамина (витамин B1). В 1950 производство витаминов в СССР увеличилось по сравнению с 1940 в 5,6 раза. К 1955 в СССР были разработаны схемы синтеза всех известных основных витаминов. Дальнейшее развитие витаминной промышленности связано главным образом с разработкой и внедрением синтетических методов производства витаминов. Эти методы по характеру технологических процессов значительно сложнее, чем метод извлечения витаминов из натурального сырья, но они позволяют получать продукцию в химически чистом виде, что имеет большое значение для их лечебного применения и точных дозировок при изготовлении кормовых концентратов. Кроме того, издержки на производство синтетических витаминов ниже издержек на получение соответствующих витаминов из натурального сырья. За 1959-65 в промышленном масштабе освоен синтез всех известных витаминов и витаминных препаратов, введены в строй крупные витаминные предприятия: Белгородский витаминный и Болоховский (Тульская область) химические комбинаты, а также значительно увеличены мощности ранее действовавших предприятий. В 1965 объём производства витаминной продукции в СССР увеличился по сравнению с 1958 в 2,8 раза, а в 1970 по сравнению с 1965 в 2,6 раза. В 1970 выпуск синтетических витаминов и их готовых форм составил более 99% всего объёма производства витаминной продукции.
К специфическим особенностям синтеза витаминов относятся: многостадийность процессов; значительная материалоёмкость, обусловливающая необходимость размещения предприятий В. п. вблизи сырьевых баз; применение специальной аппаратуры, предназначенной для работы с агрессивными средами; необходимость выработки высокочистой продукции. Витаминные заводы - специализированные предприятия. Преобладает предметная специализация - осуществление синтеза витаминов на каждом предприятии по полной схеме их производства, включая и выпуск всех полупродуктов. С конца 60-х гг. расширяется более эффективная - технологическая специализация производства полупродуктов.
Научно-технические проблемы получения витаминов и их применения разрабатываются в СССР в основном во Всесоюзном научно-исследовательском витаминном институте, а также в научно-исследовательских организациях АМН СССР, АН СССР и АН союзных республик, министерств и ведомств. Вопросы совершенствования действующих производств решаются центральными заводскими лабораториями.
Главные направления развития витаминной промышленности в России:
- создание новых высокоэффективных препаратов;
- совершенствование технологии производства и разработка новых, улучшенных схем синтеза, основанных на использовании дешёвых видов отечественного сырья;
- увеличение выработки витаминов, коферментов и их готовых форм до уровня, обеспечивающего полное удовлетворение потребностей народного хозяйства, расширение ассортимента продукции;
-  строительство новых и реконструкция действующих производств;
- механизация и автоматизация технологических процессов;
- совершенствование и организация производства отдельных полупродуктов на предприятиях других отраслей промышленности;
- повышение качества продукции;
- углубление технологической специализации;
- внедрение автоматизированных систем управления отраслью промышленности и производством.
В наиболее развитых странах, особенно в США, Японии, Великобритании, Германии, Франции, Швейцарии, производство витаминов достигло больших размеров.
Как правило, оно сосредоточено в руках химико-фармацевтических фирм.
Производство витаминов из дрожжей
В настоящее время чистые препараты витаминов получают главным образом синтетически, в некоторых случаях отдельные стадии их образования выполняются методами микробиологического синтеза. Распространенное ранее производство концентратов витаминов из продуктов растительного или животного происхождения сейчас почти полностью потеряло свое значение.
В то же время, некоторые витамины получают с помощью экстракции и очистки культуральной жидкости или биомассы микроорганизмов. Наряду с использованием непосредственно дрожжевой биомассы как источника витаминов в виде дрожжевых гидролизатов и пивных дрожжей, некоторые дрожжи используются для микробиологического производства чистых витаминов.

Витамин D2, кальциферол
Использование дрожжей для производства чистых витаминов началось в 1930-х годах с получения витамина D. С использованием специальных рас Saccharomyces cerevisiae получают эргостерол, который после облучения ультрафиолетом модифицируется в витамин D2 (кальциферол).
Существуют штаммы сахаромицетов, обладающие способностью к гиперсинтезу витамина B2 (рибофлавина), которые могут быть использованы для получения этого витамина.
Из базидиомицетовых дрожжей, обладающих способностью к интенсивному синтезу каротиноидов, получают препараты β-каротина, являющегося предшественником витамина A, и астаксантина.

Питьевые дрожжи
Дрожжевой осадок, остающийся после сбраживания пивного сусла, издавна используют для получения различных полезных веществ, в частности дрожжевых гидролизатов и автолизатов. Гидролизаты дрожжей получают, нагревая дрожжевую биомассу при 100°C в кислой среде. Большая часть белков при этом гидролизуется до аминокислот. Затем препарат нейтрализуют и концентрируют в виде густой пасты или высушивают. При получении дрожжевых автолизатов разрушение клеточных компонентов происходит под действием ферментов самой дрожжевой клетки. Этот процесс протекает в обычных условиях в или при небольшом нагревании дрожжевого осадка без питательных веществ до 50°C и обычно продолжается в течение 1-2 сут. За это время около половины всех белков в дрожжевых клетках расщепляется до аминокислот.
Дрожжевые гидролизаты широко применяются в качестве источника витаминов и аминокислот в медицине, в микробиологии при составлении питательных сред. Дрожжевые гидролизаты и автолизаты обладают способностью придавать пищевым продуктам привкус мяса, или усиливать такой вкус, поэтому они широко используются в пищевой промышленности для приготовления различных приправ, в качестве вкусовых добавок в готовые продукты (например, в картофельные чипсы).
Большой популярностью пользуются пивные (питьевые) дрожжи, приготовляемые на основе частично гидролизованной дрожжевой биомассы. Они используются в качестве источника витаминов (в первую очередь В1 и В2, а также РР, В3, В4, В6, Н), незаменимых аминокислот и жирных кислот и широко применяются в медицине, ветеринарии, косметологии, диетологии.
Красные дрожжи
Многие дрожжи синтезируют большое количество каротиноидов, придающих их колониям красную, розовую, оранжевую или желтую окраску. Способность к образованию каротиноидов и формирование окрашенных колоний встречается только среди базидиомицетовых дрожжей, то есть относится к признакам аффинитета. Наиболее характерно образование каротиноидов для родов Rhodosporidium, Cystofilobasidium, Sporidiobolus, и их анаморф Rhodotorula, Cryptococcus, Sporobolomyces. К наиболее распространенным каротиноидам относится β-каротин.

β-Каротин
Это широко распространенное соединение, встречающиеся также во многих растениях и грибах. β-Каротин является предшественником витамина A и его промышленное получение представляет интерес для медицины и некоторых других облестей. Разработаны и применяются биотехнологические процессы получения β-каротина с использованием красных дрожжей, например Rhodotorula glutinis.
У базидиомицетовых дрожжей встречаются и другие виды каротиноидов. Например, красные дрожжи Phaffia rhodozyma образуют каротиноид астаксантин.
Астаксантин

Астаксантин - широко распространенный в природе каротиноидный пигмент ярко-красной окраски. В отличие от β-каротина имеет два дополнительных атома кислорода на каждом из колец. Впервые был выделен из омаров в 1938 году, сейчас обнаружен в тканях многих растений и животных. Особенно в большом количестве содержится в тканях креветок, крабов, лососевых рыб, придавая им красный цвет.
Астаксантин является одним из наиболее активных антиоксидантов и используется в медицине для лечения ряда заболеваний. Препараты астаксантина широко используются в качестве кормовой добавки в рыбоводстве, особенно при выращивании лососей, и аквариумоводстве.
Основным источником для получения астаксантина служит водоросль Haematococcus инцистированные клетки которой содержат до 4% каротиноида. Астаксантин был обнаружен также в дрожжах Phaffia rhodozyma (телеоморфа Xanthophyllomyces dendrorhous). Генетически модифицированные штаммы Phaffia содержат до 1-2% астаксантина и могут также использоваться для промышленного получения этого каротиноида.
Клетки овальные или круглые, иногда удлиненные. Почкование истинное, многостороннее. Может формироваться примитивный псевдомицелий, но истинного мицелия не образуют. Диплоидизация происходит в результате слияния двух гаплоидных клеток (гологамия). Вегетативно размножаются в основном диплоидные клетки. Аски образуются преимущественно из вегетативных диплоидных клеток. Аски круглые или овальные, при созревании спор не вскрываются. Аскоспоры круглые или слабоовальные, бесцветные, гладкие, 1-4 в аске. Все виды активно сбраживают сахара. Дрожжи этого рода с давних времен распространены в кустарном виноделии и широко используются в разных отраслях бродильной промышленности, в связи с чем они более всех других дрожжей изучены в разных аспектах. Их систематика, однако, многократно пересматривалась. Центральный вид - Saccharomyces cerevisiae известен в десятках синонимов, которые в настоящее время рассматриваются как производственные расы, но не самостоятельные виды.
Потребность дрожжей в витаминах
Одна из характеристик, используемых для таксономического описания дрожжей - потребность в витаминах. Более 80% всех известных видов дрожжей не способны к росту на среде, не содержащей витамины (ауксотрофны). Наибольшее число видов (около 65%) нуждается в биотине и тиамине. Из других витаминов в таксономии дрожжей используется определение потребности в рибофлавине, пантотеновой кислоте, пиридоксине, инозите и никотиновой кислоте.

 Биотин, витамин H (B7)

       Тиаминпирофосфат, витамин B1
                                                              

Рибофлавин, витамин B2

     Пантотеновая кислота, витамин B5
    продолжение
1 2 3    

Добавить курсову роботу в свой блог или сайт
Удобная ссылка:

Завантажити курсову роботу безкоштовно
подобрать список литературы


Производство бета каротина


Постійний url цієї сторінки:
Курсова Производство бета каротина


Разместите кнопку на своём сайте:
Рефераты
вгору сторінки


© coolreferat.com | написать письмо | правообладателям | читателям
При копировании материалов укажите ссылку.