Обработка информации и принятие решения в системах ближней локации


головна сторінка Реферати Курсові роботи текст файли додати матеріалПродать работу

пошук рефератів

Курсова на тему Обработка информации и принятие решения в системах ближней локации

завантажити
Знайти інші подібні реферати.
подібні якісні роботи

Розмір: 0.55 мб.
Мова: російська
Розмістив (ла): shatun
24.12.2010
 1 ... 5 6 7 8 9 10 11 12 13    

disp ('Распределение подобрано верно, т. к. chi2<=chi2 (1-q)')

else

disp ('Распределение подобрано неверно, т. к. chi2>chi2 (1-q)')

end

Для сигнала гусеничной техники:

Сгруппированная сводная таблица результатов

j aj bj nj pj npj (nj-npj)^2/npj

1 – Inf -0.07004 58 0.00009 5.46033 505.53988

2 -0.07004 -0.06607 32 0.00011 6.16617 108.23348

3 -0.06607 -0.06369 17 0.00011 6.35867 17.80845

4 -0.06369 -0.06210 16 0.00010 5.89961 17.29233

5 -0.06210 -0.06051 16 0.00013 7.65444 9.09908

6 -0.06051 -0.05893 16 0.00017 9.87115 3.80530

7 -0.05893 -0.05813 9 0.00010 5.93889 1.57781

8 -0.05813 -0.05734 16 0.00012 6.71391 12.84370

9 -0.05734 -0.05655 12 0.00013 7.57856 2.57953

10 -0.05655 -0.05575 17 0.00015 8.54160 8.37603

11 -0.05575 -0.05496 15 0.00017 9.61240 3.01967

12 -0.05496 -0.05416 17 0.00019 10.80104 3.55773

13 -0.05416 -0.05337 13 0.00021 12.11825 0.06416

14 -0.05337 -0.05258 26 0.00024 13.57548 11.37115

15 -0.05258 -0.05178 20 0.00026 15.18487 1.52688

Статистика Пирсона chi2=2613.15423

Задаем уровень значимости q=0.3000

Квантиль chi2-распределения Пирсона chi2 (1-q)= 182.25040

Распределение подобрано неверно, т. к. chi2>chi2 (1-q)

Вывод: По критерию Пирсона распределение подобрано неверно, т. к. реальное значение статистики χ2р=2613.15423 намного превышает критическое значение χ2т,f=182.25040, следовательно, гипотеза о нормальном законе распределения амплитуд сигнала не подтверждается на уровне значимости 0.05.

Для фонового сигнала:

Сгруппированная сводная таблица результатов

j aj bj nj pj npj (nj-npj)^2/npj

1 – Inf 0.01690 11 0.00026 7.51515 1.61596

2 0.01690 0.01702 13 0.00031 8.99732 1.78070

3 0.01702 0.01708 14 0.00026 7.55999 5.48594

4 0.01708 0.01714 15 0.00037 10.63561 1.79095

5 0.01714 0.01720 13 0.00052 14.78664 0.21588

6 0.01720 0.01727 24 0.00071 20.31617 0.66797

7 0.01727 0.01733 33 0.00097 27.58544 1.06279

8 0.01733 0.01739 35 0.00130 37.01551 0.10975

9 0.01739 0.01745 54 0.00172 49.08550 0.49205

10 0.01745 0.01751 58 0.00225 64.32627 0.62217

11 0.01751 0.01757 79 0.00291 83.30848 0.22282

12 0.01757 0.01764 102 0.00373 106.62418 0.20055

13 0.01764 0.01770 137 0.00472 134.86147 0.03391

14 0.01770 0.01776 167 0.00590 168.57212 0.01466

15 0.01776 0.01782 185 0.00729 208.23287 2.59213

Статистика Пирсона chi2= 57.37478

Задаем уровень значимости q=0.3000

Квантиль chi2-распределения Пирсона chi2 (1-q)= 66.27446

Распределение подобрано, верно, т. к. chi2<=chi2 (1-q)

Вывод: Для фонового сигнала по критерию Пирсона распределение подобрано верно, т. к. реальное значение статистики χ2р=609411.53699 не превышает критическое значение χ2т,f=520.15366, следовательно, гипотеза о нормальном законе распределения амплитуд сигнала подтверждается.

1.7 Построение корреляционной функции для фрагмента сигнала длительностью 2000 отсчетов

Для построения корреляционной функции двух сигналов, выберем фрагменты сигналов:

Практическая часть

%Начало фрагмента задается величиной N1

N1=25001;

% конец фрагмента задается величиной N2

N2=26000;

x=tr_t200 (N1:N2); %вырезали фрагмент сигнала

r=xcorr (x, x); %Вычисление корреляционной функции

Рисунок 13 – График исходного сигнала гусеничной техники

Для сигнала гусеничной техники выбираем наиболее информативный участок от 54000 до 55000.

Рисунок 14 – График исходного фонового сигнала

Для фонового сигнала выбираем наиболее информативный участок то 45000 до 46000.

Для сигнала гусеничной техники:

h1=tr_t200 (54000:55000);% вырезали фрагмент

k=1000;

KF=xcorr (h1, h1, k);% КФ

    продолжение
 1 ... 5 6 7 8 9 10 11 12 13    

Удобная ссылка:

Завантажити курсову роботу безкоштовно
подобрать список литературы


Обработка информации и принятие решения в системах ближней локации


Постійний url цієї сторінки:
Курсова Обработка информации и принятие решения в системах ближней локации


Разместите кнопку на своём сайте:
Рефераты
вгору сторінки


© coolreferat.com | написать письмо | правообладателям | читателям
При копировании материалов укажите ссылку.