Обработка информации и принятие решения в системах ближней локации


головна сторінка Реферати Курсові роботи текст файли додати матеріалПродать работу

пошук рефератів

Курсова на тему Обработка информации и принятие решения в системах ближней локации

завантажити
Знайти інші подібні реферати.
подібні якісні роботи

Розмір: 0.55 мб.
Мова: російська
Розмістив (ла): shatun
24.12.2010
 1 2 3 4 5 6 7 8 9 ... 13    

Равномерное распределение – двухпараметрическое, т. к. в выражения для F(x) и f(x) входят 2 параметра: а и b. По равномерному закону распределены ошибка округления и фаза случайных колебаний. В MATLAB плотность и функция равномерного распределения могут быть посчитаны с помощью функций unifpdf и unifcdf, а также с помощью функций pdf и cdf с первым параметром ‘unif’.

Плотность рэлеевского распределения отлична от нуля только для неотрицательных значений х. От нуля она выпуклая и возрастает дол некоторого максимального значения. Далее с ростом х она убывает, оставаясь выпуклой. Затем становится вогнутой, продолжая убывать, и асимптотически приближается к 0. Выражение для плотности рэлеевского распределения имеет вид:

(10)

Функция рэлеевского распределения:

(11)

Это распределение однопараметрическое: оно зависит от одного параметра s. По рэлеевскому закону распределено расстояние от точки попадания в мишень до ее центра. Вычисление плотности и функции рэлеевского распределения в MATLAB реализовано с помощью функций raylpdf, raylcdf или функций pdf, cdf с превым параметром ‘rayl ‘.

Практическая часть.

tdistr={'norm', 'exp', 'unif', 'rayl'};% названия

pardistr=[[2 1]; [2,0]; [0 4]; [1 0]];% параметры

ndistr=length(tdistr);% количество распределений

xpl=[-1:0.01:5]';% абсциссы для графиков

for idistr=1:ndistr, % заполняем и строим графики

ypdf=pdf (tdistr{idistr}, xpl,…

pardistr (idistr, 1), pardistr (idistr, 2));% ординаты

figure% новая фигура

plot (xpl, ypdf);% рисуем

set (get(gcf, 'CurrentAxes'),…

'FontName', 'Times New Roman Cyr', 'FontSize', 12)

title(['\bfПлотность распределения ' tdistr{idistr}])

end;

Рисунок 5 – плотность распределения амплитуды сигнала по нормальному закону

Рисунок 6 – плотность распределения амплитуды сигнала по экспоненциальному закону

Рисунок 7 – равномерная плотность распределения амплитуды сигнала

Рисунок 8 – плотность распределения амплитуды сигнала по Релеевскому закону

На практике могут встретиться и другие виды распределений (b, c2, логнормальное, Вейбулла и т.д.). Многие из них реализованы в MATLAB, но иногда приходится писать свои функции.

Графики некоторых плотностей распределения похожи между собой, поэтому иногда вид гистограммы позволяет выбрать сразу несколько законов. Если есть какие-либо теоретические соображения предпочесть одно распределение другому, можно их использовать. Если нет – нужно проверить все подходящие законы, а затем выбрать тот, для которого критерии согласия дают лучшие результаты.

1.3 Оценка параметров распределения случайных величин для четырех законов

В выражениях для плотности и функции нормального распределения (4 – 5) параметры m и s являются математическим ожиданием и среднеквадратичным отклонением. Поэтому, если мы остановились на нормальном распределении, то берем их равными, соответственно, выборочным математическому ожиданию и среднеквадратичному отклонению:

. (12)

Математическое ожидание показательного распределения есть величина, обратная его параметру a. Поэтому, если мы выбрали показательное распределение, параметр a находим:

(13)

Из выражений для mx и sx равномерного закона распределения находим его параметры a и b:

; . (14)

Параметр s рэлеевского распределения также находится из выражения для mx

(15)

    продолжение
 1 2 3 4 5 6 7 8 9 ... 13    

Удобная ссылка:

Завантажити курсову роботу безкоштовно
подобрать список литературы


Обработка информации и принятие решения в системах ближней локации


Постійний url цієї сторінки:
Курсова Обработка информации и принятие решения в системах ближней локации


Разместите кнопку на своём сайте:
Рефераты
вгору сторінки


© coolreferat.com | написать письмо | правообладателям | читателям
При копировании материалов укажите ссылку.