Методика изучения кристаллогидратов в школьном курсе химии

Загрузка...

головна сторінка Реферати Курсові роботи текст файли додати матеріалПродать работу

пошук рефератів

Реферат на тему Методика изучения кристаллогидратов в школьном курсе химии

завантажити
Знайти інші подібні реферати.
подібні якісні роботи

Розмір: 44.34 кб.
Мова: російська
Розмістив (ла): села
22.01.2010
1 2 3    
Федеральное Агентство по образованию РФ
Институт содержания и методов обучения
Автореферат

методика изучения Кристаллогидратов в школьном курсе химии

Москва, 2007

Оглавление
Введение
Глава 1 Кристаллогидраты как объекты науки химии
1.1 История изучения кристаллогидратов
1.2 Терминология и понятия
1.3 Номенклатура кристаллогидратов
1.4 Классификация
1.5 Значение кристаллогидратов
Глава 2 Методика изучения кристаллогидратов в курсе химии средней школы
2.1 Тема «Кристаллогидраты» в стандарте школьного образования
2.2 Анализ содержания действующих программ по исследуемой теме
2.3 Анализ содержания темы «Кристаллогидраты» в школьных программах и учебниках
2.4 Реализация темы «кристаллогидраты» в контрольно-измерительных материалах (едином государственном экзамене
2.5 Возможности модернизации темы «Кристаллогидраты»
2.6 Методические рекомендации к изучению темы
Заключение
Библиография

Введение
К настоящему времени в литературе по теме кристаллогидраты накопилось большое количество фактов, отражающих состав, структуру и применение этого класса соединений. Рассмотренные факты имеют огромное значение и как мы покажем далее они не нашли достаточно полного отражения в содержании школьного химического образования.
Кристаллогидраты – это хранилища метана в недрах вечной мерзлоты и мирового океана в виде соединений включений – клатратов.
Кристаллогидраты имеют широкое применение в народном хозяйстве. Медный купорос применяют как протраву при крашении тканей для консервирования древесины, протравливания семян. В медицине разбавленный раствор медного купороса применяют как антисептическое и вяжущее средство, малые дозы медного купороса назначают иногда при анемии для усиления кроветворения.
Твердение минеральных вяжущих материалов в большинстве случаев обеспечивается гидратационными процессами, включающими в себя как чисто химические так и комплексные физико-химические процессы. В общем виде процессы сводятся к гидратации, росту кристаллов и сцеплению их между собой.
Кристаллогидраты образуются в растительных и животных организмах, которые чаще всего выпадают в виде осадков.
Изучив содержание программ и учебников, мы не были удовлетворены тем, как рассматривается тема кристаллогидраты в школе, поэтому в связи со значимостью данной темы возникает необходимостью модернизировать содержание школьного курса химии, поэтому мы выбрали эту тему в качестве выпускной работы.
Целью нашего исследования является оптимизация содержания темы «кристаллогидраты» в курсе химии средней школы в условиях модернизации общего образования.
Гипотеза исследования: разработанное и модернизированное содержание и методика изучения должна способствовать более глубокой актуализации знаний учащихся по данной теме, мобилизации активной мыслительной деятельности учащихся и развитию познавательного интереса к изучаемому предмету, развитию логических операций в условиях дефицита школьного времени.
Объект исследования: содержание школьного курса химии по теме «кристаллогидраты».
Предмет исследования: модернизация содержания темы «кристаллогидраты» и рациональная оптимизация ее изучения в курсе химии средней школы.
Для проверки гипотезы и достижения поставленной цели, были сформулированы следующие задачи:
1) изучить современные данные о структуре, свойствах и применении кристаллогидратов;
2) проанализировать самые распространенные программы и школьные учебники на предмет содержания в них исследуемой темы;
3) модернизировать содержание темы и оптимизировать структуру введения данного содержания в школьный курс;

Глава 1. КРИСТАЛЛОГИДРАТЫ КАК ОБЪЕКТЫ НАУКИ ХИМИИ
1.1 История изучения кристаллогидратов
1828 г. Ф. Рюдбергер доказал существование гидратов спирта.
1865 г. Предположение о существовании в водных растворах гидратов высказано и обосновано Д. И. Менделеевым. Он изучал взаимодействие спирта с водой и сделал вывод об образовании определенных соединений. Он считал, что растворение — не только физический, но и химический процесс, что вещества, растворяющиеся в воде, образуют с ней соединения
1880 г. Л. Пруст ввел понятие «гидраты» как особые соединения растворенного вещества с водой.
В 1889г. систематическое изучение кристаллогидратов началось с классических работ Б. Розебома над кристаллогидратами CaCl2 и Fe2Cl6 [8].
1.2 Терминология кристаллогидратов
При растворении веществ молекулы (или ионы) связываются с молекулами раствори­теля, образуя соединения, называемые солъватами (от латинского solvere – растворять); этот процесс называется сольватацией. В частном случае, когда растворителем является вода, эти соединения называются гидратами, а процесс их образования — гидратацией. В зависимости от природы растворенного вещества, сольваты могут образовываться различными путями. При растворении веществ с ионной структурой молекулы растворителя удерживаются около иона силами электростатического притяжения. Кроме того, может иметь место донорно-акцепторное взаимодействие. Ион растворенного вещества обычно выступают в качестве акцепторов, а молекулы растворителя — в качестве доноров электронных пар. Происходит гидратация и переход в раствор ионов. Гидратируются как катионы, так и анионы. Как правило, гидратированные катионы прочнее чем анионы, а гидратированные простые катионы — прочнее, чем сложные. Это связано с тем, что у простых катионов есть свободные валентные орбитали, которые могут частично акцептировать неподеленные электронные пары атомов кислорода, входящих в молекулы воды. При растворении веществ с молекулярной структурой сольваты образуются вследствие диполь-дипольного взаимодействия.
При попытке выделить исходное вещество из раствора удаляя воду, получить его часто не удается. Например, если мы растворим в воде бесцветный сульфат меди CuSO4, то получим раствор голубого цвета, который придают ему гидратированные ионы меди. После упаривания раствора (удаления воды) и охлаждения из него выделятся кристаллы синего цвета. Исходный сульфат меди можно получить из этого соединения, нагрев его до 250 °С[14]. При этом происходит реакция:
CuSO5H2O = CuSO4 + 5H2O
Разные информационные источники дают нам следующую терминологию.
Гидраты – продукты присоединения воды (гидратации) к молекулам, атомам, ионам. Они могут быть твердые, жидкие и реже газообразные.
Твердые гидраты, имеют свое название – кристаллогидраты.
Кристаллогидраты – твердые вещества, продукты присоединения воды (гидратация) к атомам, молекулам или ионам.
Кристаллогидраты – кристаллы, включающие молекулы воды.
Кристаллогидраты — вещества, включающие в себя обособленные частицы H2O, в которых атомы кислорода связаны с двумя атомами водорода ковалентными связями, а частицы Н2О в целом связаны с другими атомами либо химическими, либо межмолекулярными связями.
Кристаллогидраты – это кристаллические вещества, содержащие в своем составе отдельные молекулы воды или их агломераты.
Кристаллизационная вода – вода, входящая в состав кристаллогидратов.
Кристаллогидраты — являются представителями обширных классов соединений, куда кроме них должны быть еще отнесены: кристаллоамиакаты, кристаллоалкоголяты, кристаллоэфираты и т. д. До сих пор кристаллогидраты не выделялись в особый класс соединений, а упоминались попутно при описании некоторых солей, потому что реакции их исследовались в водных растворах, когда принято игнорировать участвующую в превращении воду [2], [14], [38], [39].
1.3 Номенклатура кристаллогидратов
Для кристаллогидратов как и для всех химических соединений существуют правила названий. Название кристаллогидрата строится из систематического названия соли и указывается количество молекул кристаллизационной воды входящих в формальную единицу. Рассмотрим конкретные примеры.
CuSO4· 5H2O – пентагидрат сульфата меди;
Na2CO3· 10H2O – декагидрат карбоната натрия;
AlCl3· 6H2O – гексагидрат хлорида алюминия.
Следует отметить, что содержание воды в кристаллогидратах формально может иметь и нецелочисленное значение, поэтому в таких случаях поступают следующим образом: CdSO4 · 2,67 H2O - 2,67- гидрат сульфата кадмия, SO2 ·n H2O – полигидрат диоксида серы. Однако рассмотренный способ названия кристаллогидратов довольно упрощенный. Если нам известна структура образуемого соединения, то мы можем его назвать более конкретно, при этом указав в какой форме вода находится в данном соединении и с какими ионами она связанна. Исследование строения кристаллов CuSO4· 5H2O показало, что в его формульной единице четыре молекулы воды связаны с атомом меди, а пятая – с сульфатными ионами. Таким образом, формула этого вещества – [Cu(H2O)4]SOH2O, имеет называние моногидрат сульфата тетрааквамеди (II).
Аналогичное строение имеет соединение [Fe(H2O)6]SOH2O – моногидрат сульфата гексаакважелеза(II).
Другие примеры:
[Ca(H2O)6]Cl2 – хлорид гексааквакальция;
[Mg(H2O)6]Cl2 – хлорид гексааквамагния.
Однако часто нам не нужно применять систематическую номенклатуру, а можно воспользоваться тривиальными названиями веществ. Так CuSO4 · 5H2O – медный купорос, Na2CO3· 10H2O – «кристаллическая» сода и т.д. [2], [26].
1.4 Классификация
Классификацию кристаллогидратов можно вести по различным критериям:
1. По наличию связи структуры безводного вещества и кристаллогидрата
·        фазы определенного состава - вид кристаллогидратов, у которых при удалении кристаллизационной воды происходит сжатие кристаллической решетки, поэтому структура безводного вещества и кристаллогидрата не связанны между собой. К данному классу относятся кристаллогидраты многоосновных кислот, оснований и клатратов.
·        неопределенного состава – вид кристаллогидратов, у которых процесс удаления воды может быть осуществлен без существенных изменений в кристалле. Это возможно при наличии в кристалле достаточного количества свободных промежутков, каналов (чтобы уместились молекулы воды). У веществ этого класса может происходить обратимая гидратация и дегидратация. Примерами таких веществ являются цеолиты [32].
2. По количеству молекул воды входящих в формульную единицу кристаллогидрата
· Существует кристаллогидраты, в которых на одну молекулу или частицу гидратированного вещества приходится 1,2,3,4,5,6,7,8,9,10,12 молекул воды.
· Но наиболее распространенными являются кристаллогидраты с 1,2,4,6,8 молекулами воды.
· Для многих веществ известны кристаллогидраты различного состава.
- MgCl2∙ nH2O где n= 2,4,6,8,12.
- CaCl2∙ nH2O где n= 1,2,4,6,8.
- NaOH∙ nH2O где n=1,2,3,4,6,8.
- H2SO4∙ nH2O где n= 1,2,4,6,8.
3. По природе соединения участвующего в образовании кристаллогидратов
*         Органическое
*         Неорганическое
3. По агрегатному состоянию гидратообразователя при н.у.
*         Твердое (соли)
*         Газ (предельные у/в, С12, Н2 S, Аг, Хе, SО2)
*         Жидкость (серная кислота, этиловый спирт)
5. Класс соединений
*         Кислоты (H2SO4.H2O)
*         Основания (NaOH.H2O)
*         Соли (ZnSO4·7H2O,MnSO4·7H2O)
6. Температурная устойчивость
·        Если кристаллизационная вода удерживается Ван-дер-Ваальсовыми силами, то такие вещества стабильны при температурах ниже нуля (клатраты)
·        Если кристаллизационная вода удерживается в кристаллогидрате слабыми межмолекулярными связями, то она легко удаляется при нагревании:
Na2CO10H2O = Na2CO3 + 10H2O (при 120 ° С);
K2SO2H2O = K2SO3 + 2H2O (при 200 ° С);
·        Если же в кристаллогидрате связи между молекулами воды и другими частицами близки к химическим, то такой кристаллогидрат или дегидратируется (теряет воду) при более высокой температуре, например:
Al2(SO4)3 · 18H2O = Al2(SO4)3 + 18H2O (при 420 ° С);
СoSO4 · 7H2O = CoSO4 + 7H2O (при 250 ° С);
или при нагревании разлагается с образованием других химических веществ, например:
2{FeCl6H2O} = Fe2O3 + 6HCl + 9H2O (выше 250 ° С);
2{AlCl6H2O} = Al2O3 + 6HCl + 9H2O (200 – 450 ° С) [14].
7.     По состоянию воды в гидратах
·        Псевдогидраты - это соединения, в которых часть молекул кристаллизационной воды образуют гидроксид ионы или ионы гидроксония (HClO4·H2O = H3O·ClO4 , Sr(BO2)2·4H2O = Sr[B(OH)4]2) Воду, входящую в состав псевдогидратов называют конституционной [39].
*         молекулы воды изолированы друг от друга. Атомы кислорода в воде координируются вокруг центрального иона: CuCl2∙ 2H2O, CoCl2∙2H2O (Приложение 2, Рис 3).
*         Внутрисферные кристаллогидраты – молекулы кристаллизационной воды удерживаются благодаря ковалентной связи с катионом [Al(H2O)6 ]Cl3, [Mg(H2O)6]Cl2 (Приложение 2, Рис 1).
*         Смешанные кристаллогидраты – кристаллизационная вода удерживается за счет образования водородных связей и донорноакцепторного взаимодействия. К данной группе можно отнести купоросы (CuSO4·5H2O или [Cu(H2O)4]SO4·H2O), пятая молекула воды связывается именно водородными связями (Приложение2, Рис 2) [2].
*         молекулы воды образуют цепи. В ряде случаев молекулы воды связывают два катиона Zn(OH)H2O и BaCl2∙ H2O. Образуются бесконечные цепи.
*         Молекулы воды образует слои, объединяемые ионами соли (CaSO4·2H2O). В соединении Mg2(OH)2(H2O)3CO3 в каналах структуры.
*         Своеобразными упорядоченными твердыми растворами внедрения типа соль — лед являются некоторые кристаллогидраты с большим числом молекул воды, например Na2SO4·10Н2О, Na2СO3·10Н2О (тектогидраты). Они имеют структуру льда, которая стабилизируется за счет стягивающего действия электростатически взаимодействующих ионов противоположного знака. Вследствие этого температура плавления тектогидратов намного превышает температуру плавления льда [2].
1.5 Значение кристаллогидратов
Образование и разрушение газовых клатратов используются, для разделения газов опреснения морской воды. Клатраты в природе часто играют роль естественного хранилища газов. Кристаллогидраты занимают важное место в строительстве в процессах схватывания и твердения вяжущих. В растительных клетках часто встречаются кристаллы оксалата кальция. Кристаллы представлены в основном моно(CaC2O4∙H2O) и дигидратами (CaC2O4∙2H2O). Первые кристаллизуются в клиноромбической системе, вторые в гексагональной. Они откладываются только в вакуолях. Форма кристаллов оксалата кальция довольно разнообразна и часто специфична для определенных групп растений. Это могут быть одиночные кристаллы ромбоэдрической, октаэдрической или удлиненной формы (клетки наружных отмерших чешуи луковиц лука), друзы (чешек, druza — группа) — шаровидные образования, состоящие из многих мелких сросшихся кристаллов (клетки корневищ, коры, корки, черешков и эпидермы листьев многих растений), рафиды (греч. рафис — швейная игла) — мелкие игольчатые кристаллы, соединенные в пучки (стебель и листья винограда), и кристаллический песок — скопления множества мелких одиночных кристаллов (паренхимные клетки многих пасленовых бузины). Наиболее часто встречающаяся форма кристаллов — друзы.
Выводы: с момента первоначального изучения кристаллогидратов до настоящего времени в науке накопилось большое количество сведений о таком классе химических соединений, как кристаллогидраты. Школьное химическое образование не должно отставать от достижений, происходящих в научном мире, поэтому целью данной главы является проведение анализа химической литературы и выяснение того, как рассматривается тема кристаллогидраты на современном этапе развития химии. Анализ показал, что по данной теме появилось достаточно много новой информации. Данная тема имеет очень важное значение, как в общенаучном плане, так и прикладном плане. Это дает нам возможность проанализировать содержание данной темы в курсе химии средней школы.
    продолжение
1 2 3    

Добавить реферат в свой блог или сайт
Удобная ссылка:

Завантажити реферат безкоштовно
подобрать список литературы


Методика изучения кристаллогидратов в школьном курсе химии


Постійний url цієї сторінки:
Реферат Методика изучения кристаллогидратов в школьном курсе химии


Разместите кнопку на своём сайте:
Рефераты
вгору сторінки


© coolreferat.com | написать письмо | правообладателям | читателям
При копировании материалов укажите ссылку.