Живлення рослин вуглецем

Загрузка...

головна сторінка Реферати Курсові роботи текст файли додати матеріалПродать работу

пошук рефератів

Курсова на тему Живлення рослин вуглецем

завантажити
Знайти інші подібні реферати.
подібні якісні роботи

Розмір: 2.96 мб.
Мова: український
Розмістив (ла): Людмила
23.12.2010
 1 2 3 4 5 6 7 8    

Як допоміжні пігменти фотосинтетичного апарату каротиноїди забезпечують поглинання квантів двома піками в синьо-фіолетовий та синій областях спектра (420...490 нм) і деякою мірою в зеленій (490...550 нм). Максимуми поглинання залежать від замісників біля вуглецевого скелета, типу розчинника та кількості подвійних зв'язків. В амплітуді від 400 до 550 нм вони, як правило, мають дві-три смуги поглинання.

Рис. 8. Структурні формули каротиноїдів

Отже, каротиноїди розширюють спектр дії фотосинтезу, забезпечуючи, поглинання від 10 до 20 % енергії сонячних квантів, причому близько 50 % енергії поглинається в короткохвильовій області — зоні високих енергій. Ці пігменти виконують функцію світлопоглинання, передаючи енергію свого електронно-збудженого стану до хлорофілу а. Зворотний процес передачі неможливий. Слід підкреслити, що каротиноїди, на відміну від хлорофілів, не здатні до флуоресценції.

Такі каротиноїди, як віолаксантин, неоксантин, зеаксантин та інші, поглинаючи світло в короткохвильовій високоенергетичній частині спектра, виконують захисну функцію, як хімічні буфери в реакціях фотосинтезу. Можливий механізм захисту полягає в тому, що каротиноїди здатні реагувати зі збудженою молекулою хлорофілу, забираючи від нього енергію, чим попереджають його фотоокиснення. Енергія фотозбудженої молекули хлорофілу переходить до каротиноїду, хлорофіл набуває нормального енергетичного стану, а енергія виділяється у вигляді тепла. Завдяки цьому каротиноїди оберігають хлорофіл та інші біологічно активні сполуки від фотоокиснення.

Слід згадати, що каротиноїдам належить ще одна специфічна функція в регулюванні фотосинтетичного апарату рослинного організму. Річ у тім, що хлоропласти переміщуються в клітині під впливом синіх променів, які знову ж таки поглинаються каротиноїдами.

Фізіологічна функція каротиноїдів не обмежується їхньою участю в передачі енергії на молекули хлорофілів. Каротиноїди — переносники активного кисню, вони беруть участь в окисно-відновних реакціях завдяки наявності значної кількості подвійних зв'язків. їм належить певна функція у статевому процесі рослин, а саме: вони зумовлюють забарвлення пелюсток квітів, плодів, коренеплодів. Залишається мало з'ясованою їхня функція в кисневому обміні, участь у формуванні фотоперіодичної реакції, в ростових процесах, зокрема під час проростання насіння, в проявах фототаксису та фототропізму.

3.3 Фікобіліни

Такі фотосинтезуючі організми, як синьо-зелені водорості, червоні та деякі інші представники водоростей, окрім хлорофілів і каротиноїдів, мають ще одну групу допоміжних пігментів — фікобіліни. Цю назву вони одержали завдяки своїй подібності до тваринних пігментів — білірубінів.

Білінами називають досить поширені в природі тетрапіроли з відкритим ланцюгом, без металу. В тваринному царстві вони часто трапляються як нефункціональні катаболіти гема. Рослинні біліни (фікобіліни) функціонують як сенсибілізатори і фоторецептори, що забезпечується їхнім ковалентним зв'язком з апобілками. Отже, подібно до хлорофілів, фікобіліни — тетрапіроли, але чотири залишки піролу в них створюють незамкнутий витягнутий або згорнутий ланцюг. Піроли з'єднуються між собою метиленовими і метиновими містками, тоді як хромофорні групи, як правило, ковалентно зв'язані білком.

Хромофорною групою фікоціанінів є фікоціанобілін, фікоерит-ринів — фікоеритробілін (рис. 9).

Відрізняються вони між собою лише взаєморозміщенням пірольних і піроленінових кілець. У фікобілінпротеїнах одна молекула білка може зв'язувати кілька хромофорних груп. Фікоеритробілін у сполученні з білком називають фікоеритрином. Він добре розчинний у воді, поглинає кванти зеленої частини спектра. Фікоеритробіліни (C34H47N4O8) трапляються переважно у червоних водоростей, де й визначають їхнє забарвлення, адже фікоеритрини — білки червоного кольору, які мають максимуми поглинання 500...568 нм.

Фікоціанобіліни (C34H42N4O9) характерні для синьозелених водоростей, причому максимуми поглинання фікоціанінів дещо зсунуті в довгохвильову область — від 585 до 630 нм.

Фікоеритрин і фікоціанін складаються з двох різних білкових субодиниць, які позначають відповідно а (молекулярна маса 19 000) і р (молекулярна маса 21 000) у співвідношенні 1 : 1. Кожна з білкових субодиниць несе ковалентно зв'язаний з нею фікобілін. Як правило, фікобіліни, зв'язані з однією субодиницею, належать до одного типу, тобто до фікоеритробілінів або фіко-ціанобілінів.

Рис. 9. Хромофорні групи фікоціанінів і фікоеритринів

До фікобілінів належать також алофікоціаніни — пігменти з максимумами поглинання від 585 до 650 нм, хромофорну групу їх поки що не визначено. Цю назву алофікоціаніни одержали завдяки тому, що спочатку їх приймали за одну з форм фікоціаніну. На відміну від інших фікобілінпротеїнів їхня молекула складається лише з одного типу білкових одиниць (молекулярна маса 15 кДа), причому кожна субодиниця несе одну молекулу ало-фікоціаніну.

Алофікоціанін характерний для синьозелених, хоча трапляється також у червоних і криптомонадових водоростей. А загалом поширення окремих типів пігментів фікобілінів серед синьозелених, червоних і бурих водоростей досить специфічне.

Слід зазначити, що на відміну від хлорофілів і каротиноїдів, локалізованих у ламелах, фікобіліни концентруються або в стромі, або формують особливі впорядковані ансамблі на поверхні мембран — фікобілісоми (рис. 10).

Як правило, в таких водоростях фікобіліни присутні в значно більшій концентрації порівняно з хлорофілами, тому саме вони і зумовлюють їхнє забарвлення. Фікоціаніни, фікоеритрини і алофікоціаніни трапляються в різних співвідношеннях, причому залежно від умов освітлення формується переважно такий набір пігментів, який найкраще використовує відповідний спектп.

Рис. 10. Модель фікобілісоми: аф — алофікоціаніни

Пігменти даної групи виконують функцію світлозбиральної антени та забезпечують ефективну передачу поглинутої ними енергії сонячного світла до хлорофілів а.

Фікобіліни зумовлюють явище філогенетичної хроматичної адаптації водоростей в їхній вертикальній зональності.

Як відомо, червоні промені, що відповідають спектру поглинання хлорофілу, поглинаються, проходячи крізь товщу води. Вже на глибині 34 м зникають червоні промені, 177 м — жовті, 322 м — зелені, 500 м — сині та фіолетові. Відповідно до цього певні екологічні ніші займають спочатку зелені, потім синьо-зелені і, нарешті, червоні водорості. Наявність фікобілінів дає змогу водоростям у процесі фотосинтезу використовувати промені, які проникають на певну глибину, та займати відповідні екологічні ніші.

3.4 Оптичні властивості фотосинтетичних пігментів

Оптичні властивості пігментів зумовлені спільною для всіх структурою. Як основні, так і допоміжні пігменти характеризуються чітко вираженим чергуванням подвійних та одинарних зв'язків. Кожному зв'язку відповідають два електрони. Біля кожного атома вуглецю міститься вісім валентних електронів, які є спільними для даного атома вуглецю та для сусідніх його атомів. Подвійний зв'язок С=С формує пара електронів, які утворюють σ- та π-зв'язок. Крім того, є пара π-електронів, яка може переміщуватися по всьому вуглецевому ланцюжку (так званий резонанс). Завдяки резонансу молекула хлорофілу набуває додаткової стабільності. Спарені електрони пов'язані з усією системою спряжених подвійних зв'язків, а не з окремими атомами, тому вони легко збуджуються квантами світла. Енергія такого збудження настільки незначна, що легко забезпечується променями денного світла (380...720 нм).

Порфірини — найбільш стабільні та інертні органічні речовини. В порфіриновому ядрі хлорофілу система спряжених зв'язків замкнута й π-електрони можуть циркулювати, тобто характеризуються ще більшою свободою переміщення, ніж у каротиноїдах. Крім того, порівняно з каротиноїдами у хлорофілів є додаткові можливості для поглинання світла. Адже у кожного атома азоту три пари електронів спільні для сусідніх атомів вуглецю. На орбіталі є ще одна пара електронів, що спрямована до магнію. Це так звані л-електрони, які також здатні поглинати кванти.

3.5 Біосинтез пігментів фотосинтетичного апарату рослин

Фотосинтетичні пігменти — досить складні органічні сполуки, тому їх біосинтез охоплює низку етапів. Хлорофіли, як і подібні до них за хімічними властивостями цитохроми (Fe-порфірини), характеризуються єдиним процесом синтезу від простих складових до тетрапірольних структур (виразний приклад єдності шляхів метаболізму у тварин і рослин). Шляхом тетрапірольного синтезу утворюються й інші речовини, які використовують світло як сигнал (наприклад, фітохромна система), так що тетрапірольні структури формують майже весь залежний енергетичний та інформаційний апарат рослин.

Доведено, що в мембранах етіопластів і хлоропластів локалізовані специфічні центри біосинтезу пігментів, де й зосереджуються їхні попередники — протохлорофіліди та хлорофіліди. Реакції, що забезпечують синтез протохлорофіліду, відбуваються за відсутності світла, тоді як утворення з протохлорофіліду хлорофіл іду вимагає освітлення.

Біосинтез порфіринів у вищих рослин відбувається в три етапи:

    продолжение
 1 2 3 4 5 6 7 8    

Удобная ссылка:

Завантажити курсову роботу безкоштовно
подобрать список литературы


Живлення рослин вуглецем


Постійний url цієї сторінки:
Курсова Живлення рослин вуглецем


Разместите кнопку на своём сайте:
Рефераты
вгору сторінки


© coolreferat.com | написать письмо | правообладателям | читателям
При копировании материалов укажите ссылку.